Data Science i uczenie maszynowe (e-book)

Data Science i uczenie maszynowe (e-book) - Marcin Szeliga | Thespot.exchange Przeczytaj książkę przez. bezpośrednio w Twojej przeglądarce. Pobierz książkę przez. w formacie PDF, TXT, FB2 na smartfonie. I wiele więcej thespot.exchange.

INFORMACJA

AUTOR
Marcin Szeliga
WYMIAR
10,33 MB
NAZWA PLIKU
Data Science i uczenie maszynowe (e-book).pdf
ISBN
1524721779053

OPIS

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści — analitycy, informatycy i bazodanowcy — zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: • Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. • Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. • Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. • Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW." /> XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści — analitycy, informatycy i bazodanowcy — zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: • Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. • Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. • Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. • Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

Wspieraj Legalne Źródła zamiast strony typu chomikuj. Informacje o Data Science i uczenie maszynowe Ebook. - 6842817049 w archiwum Allegro.

Data science jako metoda naukowa 12 1.8. Data science i uczenie maszynowe ma szansę zaspokoić ciekawość osób, które z różnych powodów chcą zacząć swoją przygodę z analityką. Kompleksowy i szeroki zakres omawianego materiału powinien także pomóc uporządkować wiedzę bardziej doświadczonym czytelnikom. Inni czytelnicy czytali także ebooka Data Science i uczenie maszynowe - Szeliga Marcin oraz JAVA.

POWIĄZANE KSIĄŻKI